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We argue that one can nucleate a traversable wormhole via a nonperturbative process in quan-
tum gravity. To support this, we construct spacetimes in which there are instantons giving
a finite probability for a test cosmic string to break and produce two particles on its ends.
One should be able to replace the particles with small black holes with only small changes to
the spacetime away from the horizons. The black holes are then created with their horizons
identified, so this is an example of nucleating a wormhole. Unlike previous examples where the
created black holes accelerate apart, in our case they remain essentially at rest. This is impor-
tant since wormholes become harder and harder to make traversable as their mouths become
widely separated, and since traversability can be destroyed by Unruh radiation. In our case,
back-reaction from quantum fields can make the wormhole traversable.
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1 Introduction

Classically, there are no traversable wormholes. This is a consequence of topological censorship

[1], which says that if the null energy condition is satisfied, any causal curve that starts and ends

at infinity can be continuously deformed to a causal curve that stays in the asymptotic region.

However, it has recently been shown that quantum matter fields can provide enough negative

energy to allow some wormholes to become traversable. This was first shown for asymptotically

anti-de Sitter wormholes using ideas from gauge/gravity duality [2, 3, 4] and later generalized

to asymptotically flat wormholes [5, 6].1

While the wormhole may only be traversable for a limited time, in all of the examples that

have been discussed so far the wormhole itself is eternal, i.e., it exists on all complete spacelike

surfaces. This is not surprising since the quantum fields produce only small effects and there

is a theorem which says that the topology of space cannot change in classical general relativity

[8].

The topology of space can change through a nonperturbative quantum tunneling event. This

tunneling process can be investigated in the path integral formulation of quantum gravity if a

sum over all topologies is assumed in the integral. Instantons, classical solutions to Euclidean

field equations, have been widely used to study non-perturbative quantum processes of this type

[9]. For example, there is an instanton describing the pair creation of oppositely charged black

1In these examples, it takes longer to go through the wormhole than to go around. As these papers explain,
one expects this will be true for all traversable wormholes since it is required by the generalized second law [7]
and boundary causality (when there is a field theory dual).
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holes in a background electric or magnetic field [10]. This is directly analogous to the Schwinger

pair creation of oppositely charged particles in an electric field. The black holes are created

with their horizons identified, so this process creates a wormhole. In the small black hole limit,

the instanton reduces to the standard one-particle description of the Schwinger effect as arising

from a Euclidean solution where the black hole particle moves on a circle about the origin [11].

Several other analogous examples have also been found and studied [12, 13, 14, 15, 16, 17, 18].

If the mouths of the wormhole followed static trajectories, the path integral that computes

quantum corrections to the wormhole would be of the form studied in [6]. So, as argued

there, in a semiclassical approximation with the metric determined by the expectation value

of the quantum stress tensor, and with appropriate boundary conditions, back-reaction from

quantum fields would generically transform the solution into a traversable wormhole. Justifying

this approximation typically requires that many degrees of freedom propagate in the throat [5].

Unfortunately, although the above instantons create black holes at rest, the background

fields cause the black holes to quickly accelerate away from one another so that the analy-

sis of [6] does not apply. Indeed, the black holes are separated by an acceleration horizon.

Mathematically, this allows a Killing symmetry that generates both horizons and requires any

quantum stress tensor to vanish when contracted with the horizon generators. This means that

back-reaction from quantum fields will not make the wormhole traversable. Physically, one

finds that the wormhole is created in an excited state dictated by the Unruh temperature de-

fined by the acceleration horizons. So while the wormhole ground state may be traversable, the

probability of finding such a state in the associated thermal ensemble is small due to both the

tiny gap separating the energies of traversable and collapsing wormholes and the small number

of traversable wormhole states relative to non-traversable black holes [4, 5]. If one tries to tune

parameters to reduce the acceleration, the black holes are created farther and farther apart.

Not only might one like to create wormhole mouths at finite locations, but a wide separation

between the mouths makes the wormhole even more fragile so that the same problem remains.

In particular, the asymptotically flat four-dimensional traversable wormholes of [5] with

radius r0 and separation d have a large parameter q ∼ r0/`planck that allows the gap Egap ∼ q/d

between traversable and collapsing wormholes to be parametrically large compared with the

temperature T = 1
2πd

set by the acceleration horizons. But the number of traversable wormhole

states is small and the black hole entropy SBH = A/4`2
planck = πr2

0/`
2
planck is much larger than

Egap/T ∼ r0/`planck, so non-traversable wormholes dominate the ensemble at all accelerations

a ∼ 1/d. On the other hand, in the appropriate background such traversable wormholes will

dominate if we can find instantons with

ad� `planck/r0. (1.1)

We will indeed find backgrounds that admit instantons with vanishingly small accelerations,

though ours will be asymptotically anti-de Sitter.

2



The goal of this paper is to argue that one can produce traversable wormholes through a

quantum tunneling event. As mentioned above, to achieve this we need to create the wormhole

mouths a finite distance apart with arbitrarily small acceleration. We can think of this as

creating a pair of black holes whose horizons are initially identified, with the understanding

that back-reaction from quantum fields will then render the wormhole traversable. So long as

the saddle-point black holes are near extremality and the theory contains massless fields that

can propagate in the wormhole throat with appropriate boundary conditions, the wormhole

will remain open for a long time [4, 5, 6]. Fields of this type include massless bulk fields

that allow s-waves (so unfortunately this fails for photons or gravitons), massless modes of

fermions bound to magnetic field lines, and massless excitations on cosmic strings threading

the wormhole. Under the proper boundary conditions, fields that propagate less well in the

throat will still make the wormhole traversable but, if only such fields are present, the time the

wormhole remains open is generally small and vanishes at extremality.

For simplicity, we will model the black holes as point particles and consider a process in

which a cosmic string breaks and nucleates the two particles on its ends. We will also neglect the

backreaction of the cosmic string and created particles.2 We will explicitly construct spacetimes

in which a test string can nucleate two test particles with arbitrarily small acceleration. In

effect, we find situations in which the standard circular Schwinger instanton mentioned above

is distorted into a highly eccentric configuration whose extent in the Euclidean time direction

is much larger than its width in space. One should be able to replace our particles with small

black holes with negligible changes to the geometry elsewhere, and one may choose to identify

their initial horizons as desired. If the black holes have the correct temperature to match the

periodicity of the particle orbit in Euclidean time, then the full instanton will be smooth. But

we may also consider instantons with conical singularities at the horizons as in [19].

In Section 2, we explain a subtlety with the instantons we use. In section 3 we derive the

conditions on the spacetime in order to create nearly-static particles. The calculation of the

action for our instantons is given in section 4. Section 5 provides a simple example of a star in

AdS which satisfies our conditions, while section 6 describes a class of vacuum examples. The

latter are obtained by deforming the metric on the boundary of global AdS. Section 7 concludes

the paper with some final remarks.

2 An Instanton Subtlety

Before proceeding to the construction of suitable spacetimes, we explain a subtlety with the

instanton we need for our problem. The energy required for the nucleation of black holes (or

particles) is provided by the reduction in the potential energy of the system. For example,

with a magnetic field background, the appearance of a magnetic monopole pair reduces the

2For discussions of a gravitating cosmic string nucleating two black holes which accelerate apart, see [17, 18].
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electromagnetic potential energy; for the breaking of a cosmic string, the removal of a piece

of string reduces the elastic potential energy. Unfortunately, the same feature that provides

the required energy also provides a force for the created particles to accelerate away from

each other. In order to create nearly static particles, we must somehow counterbalance this

undesired acceleration. In this paper, we show that the curvature of spacetime can provide this

counterbalance.

One cannot create completely static particles since if the Lorentzian solution for particles

attached to cosmic strings describes two static worldlines, the Euclidean solution will also

consist of two worldlines which are independent of Euclidean time. So there will not be a slice

of the Euclidean solution describing the initial unbroken cosmic string. Instead we want a

family of instantons which describe the creation of particles with arbitrarily small acceleration,

and thus finite but arbitrarily small Unruh temperature.

It is instructive to think in terms of effective potentials. If the static Lorentzian solution

has exactly the same energy as the unbroken cosmic string, then the effective potential has two

degenerate minima (see Fig. 1a). One minimum represents the unbroken string and the other

represents the broken string with static particles on its ends. There is no “decay” from one

minimum to the other in this double well potential. However, we will see that by adjusting

the ratio of the string tension to the mass of the particles, one can lower the second minimum

continuously. Now there are instantons which describe the nucleation of two particles on the

ends of the string (see Fig. 1b). Assuming the original static solution is stable to small fluc-

tuations (which will be the case in our examples) these particles will oscillate around the true

minimum. We can now tune this acceleration to be as small as desired by adjusting the second

minimum. The action for the instanton relative to the unbroken cosmic string, ∆S, remains

finite in the limit that the minima become degenerate, but the decay probability goes to zero.

This is because the the decay rate is given by

Γ = |K|e−2∆S (2.1)

where K is the contribution from small fluctuations about the instanton. This vanishes in the

limit since the negative mode goes away.

In this paper, we will calculate ∆S in the limit that the minima become degenerate and

interpret it as providing the leading semiclassical decay rate when the minima are slightly

separate. We will also refer to the static separation as the “separation between the created

particles” with the understanding that this is the limiting case. As discussed in the introduction,

our instantons will create traversable wormholes so long as the acceleration is sufficiently small,

proportional to a power of `planck (see (1.1) for the case of the wormholes of [5]).3 We expect

3Alternatively, one can work with the strict double well potential. Since a state localized in the first minimum
is a linear superposition of the symmetric and antisymmetric energy eigenstates, if we start with the unbroken
cosmic string and wait, it will turn into a broken string with static particles on its end. At that time we can
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(a) Degenerate minima (b) Nondegenerate minima

Figure 1: (a) The red dot (unbroken string configuration) and black dot (broken string with
static particles on the ends) are degenerate. In this case, the wavefunction of the true ground
state (blue dashed curve) is a symmetrized state centered around both minima. (b) The red
dot tunnels to the purple dot (broken string with particles momentarily at rest on ends), which
then oscillates around the black dot (the true vacuum). As the static pair creation limit is
approached, the black dot moves up towards the purple dot so the difference in the potential
energy between the red dot and the black dot diminishes.

K for such cases to be proportional to some positive power of the `planck, and ∆S to diverge

like an inverse power of `planck, so the leading contribution to Γ as `planck → 0 is indeed e−2∆S.

3 Conditions on the Spacetime

We are interested in static metrics that admit a two-dimensional totally geodesic sub-manifold.

Totally geodesic submanifolds have vanishing extrinsic curvature and in particular are extremal

surfaces. We may thus take this surface to be the worldsheet of our cosmic string in the case

where it does not decay. So long as no external forces act transversely to this submanifold, for

appropriate initial conditions the totally geodesic condition further allows us to compute the

motion of particles using only the induced two-dimensional metric

ds2
2D = −f(r)dt2 +

dr2

g(r)
. (3.1)

In particular, this will suffice to study the motion of particles created by the decay of our cosmic

string. Furthermore, in the cases we will study below, the spacetime metric has an additional

Z2 symmetry r → −r.
We would like to understand under what conditions one can find a nearly static particle

pair created by cosmic string breaking in such backgrounds. We thus consider the following

place an obstacle between the two masses to stop it from transitioning back into an unbroken cosmic string.
This is another way to create a traversable wormhole.
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(a) Subsequent acceleration (b) Subsequent oscillation

Figure 2: The process of string breaking. The green regions in the vertical and horizontal
planes are the string worldsheet W in the Lorentzian and Euclidean sections respectively. The
blue curve represents the Euclidean trajectory of the particle, while the red curves represent
the worldlines of the physical particles after being created. (a) The traditional case where the
two particles subsequently fly apart, being pulled by the broken pieces of string. (b) Our case
where the particles are created close to local minima of an effective potential V (r), so that
the subsequent motion is oscillatory with small acceleration. Note that the Euclidean solution
in this case is not a symmetric circle but is elongated so the acceleration at the transition is
smaller.

action

SL = −µ
∫∫

W

dA−m
∫
∂W

√
−gab

dxa

dλ

dxb

dλ
dλ, (3.2)

where the subscript L denotes Lorentzian signature, W is the worldsheet of the unbroken string

or the union of both string worldsheets that arise from breaking the original cosmic string, dA

is the proper area element on the worldsheet, λ is a parameter along the boundary ∂W of W ,

µ is the string tension, and m is the particle mass. In our set up, W has either no (inner)

boundary or two boundaries, corresponding to an infinitely long string that is either unbroken

or broken (see Fig. 2).

We are interested in situations when the string is broken while preserving the Z2 symme-

try. It is convenient to subtract the action of the unbroken cosmic string and work with the

difference:

∆SL = −2µ

∫ +∞

−∞

∫ r(t)

0

√
f(r̃)

g(r̃)
dr̃dt− 2m

∫ +∞

−∞

√
f(r(t))− ṙ2(t)

g(r(t))
dt,

≡ 2

∫ +∞

−∞
dt L(r(t), ṙ(t)), (3.3)
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where ˙ represents derivatives with respect to t and the last equality defines the Lagrangian

L(r, ṙ):

L(r, ṙ) = µP (r)−m

√
f(r)− ṙ2

g(r)
, (3.4a)

where

P (r) =

∫ r

0

√
f(r̃)

g(r̃)
dr̃ ≥ 0 . (3.4b)

The equations of motion for the particles derived from this action reads

µ

m

√
f(r)

g(r)
=

∂

∂r

(√
f(r)− ṙ2

g(r)

)
− d

dt

[
∂

∂ṙ

(√
f(r)− ṙ2

g(r)

)]
. (3.5)

Since L(r, ṙ) does not depend explicitly on time, its associated Hamiltonian is conserved:

E = ṙ
∂L
∂ṙ
− L =

mf√
f − ṙ2

g

− µP (r) . (3.6)

This energy represents the difference between the energy of the given configuration and that

of the infinite unbroken cosmic string. Since the process of nucleation conserves energy, we set

E = 0. As a result, ṙ is determined by the simple condition

ṙ2 + V (r) = 0 , (3.7a)

where

V (r) = fg

{
m2 f

[µP (r)]2
− 1

}
. (3.7b)

Once can explicitly check that Eqs. (3.7) solve Eq. (3.5).

The existence of static orbits is equivalent to the requirements

V (r1) = V ′(r1) = 0 . (3.8)

which readily give

µ

m
=

√
g

f

(√
f
)′∣∣∣∣

r=r1

, and f(r1) =
√
g
(√

f
)′
P (r)

∣∣∣∣
r=r1

. (3.9)

We also want the static orbits to be stable. As usual, stability may be determined by

computing V ′′(r1), which turns out to be given by

V ′′(r1) = − g(r1)

f(r1)
f ′(r1)2 +

1

2
f ′(r1) g′(r1) + g(r1)f ′′(r1) . (3.10)
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In particular, if V ′′(r1) > 0, the static orbit is stable.

It is interesting to look for solutions defined by spacetimes satisfying the Einstein equations

sourced by matter that respects the null energy condition. To this end, consider a static

spherical metric of the form

ds2
2D = −f(r)dt2 +

dr2

g(r)
+ r2dΩ2

2 , (3.11)

where dΩ2
2 is the usual round metric on S2,

dΩ2
2 = dθ2 + sin2 θdφ2. (3.12)

Consider now a null vector uµ. After expressing ut in terms of the other components of the null

vector uµ, contracting uµ twice with the matter stress tensor Tµν will yield

8πTµνu
µuν = (. . .)(ur)2 + (. . .)

[
(uθ)2 + sin2 θ(uφ)2

]
. (3.13)

Requiring the two terms to be non-negative then results in two conditions on the functions f(r)

and g(r). However, when f(r) = g(r), the first term always vanishes [20] and we are left with

one condition on f(r). In this case, the non-zero components of the Einstein tensor are

Gtt =

(
−1 + f + rf ′

r2

)
(−f) (3.14a)

Grr =

(
−1 + f + rf ′

r2

)
1

f
(3.14b)

Gθθ =
1

2
r(2f ′ + rf ′′) =

Gφφ

sin2 θ
. (3.14c)

Using the Einstein equations and noting that the cosmological term vanishes when contracted

with the null vector gives

8πTµνu
µuν =

(
1− f +

1

2
r2f ′′

)[
(uθ)2 + sin2 θ(uφ)2

]
. (3.15)

The null energy condition then requires

f ′′ ≥ 2(f − 1)

r2
(3.16)

for all r.

It would also be reasonable to ask that the stronger weak energy condition holds: Tµνu
µuν ≥

0 for all timelike observers uµ. This gives an additional condition which for f(r) = g(r) takes

the form:

rf ′ ≤ 1 +
3r2

L2
− f. (3.17)

We will now use what we learned in this section to construct background geometries that

admit static orbits resulting from the breaking of a cosmic string.
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4 Semiclassical Production Rate

Besides finding orbits in a plethora of spacetimes, we are also interested in studying the in-

stantons that give a finite probability for a test cosmic string to break and produce particles

attached to the broken ends. To do so we must solve the Euclidean equations of motion and

find a trajectory r(τ) describing expansion from r = 0 to (near) the static orbit r = r1 deter-

mined in the previous section. Here τ is the Wick rotated time τ = it . We use Euclidean time

translation symmetry to set r = r1 at τ = 0 and r = 0 at τ = τ0 < 0. In addition, regularity

under r → −r demands dr/dτ |τ=τ0 = +∞⇒ τ ′(0) = 0 (see the blue curves in Fig. 2).

In the semiclassical approximation, the production rate of such instantons is given by

Γ = e−2∆S (4.1a)

∆S = −µ
∫∫

W

√
f(r)

g(r)
drdτ +m

∫
∂W

√
f(r) +

1

g(r)

(
dr

dτ

)2

dτ

= −2

∫ 0

τ0

µP (r(τ))−m

√
f(r(τ)) +

1

g(r(τ))

(
dr

dτ

)2
 dτ . (4.1b)

where ∆S is the Euclidean action of the instanton relative to the eternal unbroken cosmic

string in the background spacetime with S defined to be the analytically continued value of

the Lorentzian action multiplied by −i, and W is the complement of the Euclidean string

worldsheet.

The Euclidean equations of motion for the particles can be readily obtained by varying

∆S with respect to r(τ). Just as for Lorentzian signature, these instantons can be reduced to

studying a single ODE via “energy conservation”, which in this case gives

dr

dτ
=
√
f(r)g(r)

√
f(r)[

C1 + µ
m
P (r)

]2 − 1 , (4.2a)

where C1 parametrises the “Euclidean energy”. Regularity of τ(r) at r = 0 demands C1 = 0.

We thus have
dr

dτ
=
√
f(r)g(r)

√
f(r)

µ2

m2P (r)2
− 1 . (4.2b)

Inputting the expression for dr(τ)/dτ into the on shell action gives a simple expression for ∆S

∆S = 2

∫ 0

τ0

[
−µP (r(τ)) +

m2

µ

f(r(τ))

P (r(τ))

]
dτ. (4.3)

Since this expression only depends on τ , through r(τ), we can perform another change of

variable and write everything in terms of r instead. This simplifies our final expression to

∆S = 2m

∫ r1

0

1√
g(r)

√
1− µ2

m2

P (r)2

f(r)
dr . (4.4)
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This final expression bypasses the need to actually determine the instanton orbits r(τ), since

it depends on f and g only. Note that r1 and µ/m are determined by Eq. (3.9).

This is the expression we are going to use in the following sections. For finite r1, it is clear

that ∆S is finite. This may at first seem surprising as in the limit where the created particles

sit on static worldlines r = r1 the Euclidean time τ0 at which r = 0 must diverge to −∞.

This is the phenomenon described in the introduction where the Euclidean worldline becomes

a highly eccentric closed loop that extends much farther in Euclidean time than it does in

space. In this limit, the action ∆S receives contributions from an infinite set of Euclidean

times. However, the contribution from Euclidean times near τ = 0 vanish in this limit as any

static orbit has Euclidean action E
∫
dτ , so energy conservation guarantees such contributions

to precisely cancel analogous contributions to the action of the unbroken cosmic string. The

net result is that ∆S receives non-negligible contributions only from Euclidean times near ±τ0

and thus naturally remains finite as τ0 → −∞.

5 An AdS Star Example

In this section we present a simple analytic 3+1-dimensional metric satisfying all the conditions

derived in Sec. 3. In other words, it contains stable static solutions for particles attached to a

cosmic string which have the same energy as the unbroken string. The metric is:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2, (5.1a)

f(r) =


1 +

r2

L2
− 2M

r
, r > R

1 +
r2

L2
+ Ar6 −Br2, r < R,

(5.1b)

where A and B are positive parameters to be determined, and R is for now an arbitrary

parameter bigger than the horizon radius for the given M .

The null energy condition is satisfied everywhere, which can be checked using Eq. (3.16).

Matching f(r) and f ′(r) at R gives

A =
3M

2R7
(5.2)

B =
7M

2R3
. (5.3)

The static and energy conservation conditions require the radius of static particles r1 to be

r1 =

(
1

2A

)
= R

(
R

3M

)1/6

, (5.4)

with r1 < R. Thus, R < 3M , i.e. the star has to be fairly compact.

10



If we want the weak energy condition to hold, we also need T00 ≥ 0. We find:

8πT00 =
21M(R4 − r4)

4R14

[
2

(
1 +

r2

L2

)
R7 +Mr2(3r4 − 7R4)

]
. (5.5)

There is only one term that could be negative, and we can ensure the expression is always

positive by taking M ≤ 2R3

7L2 . Note that this does not conflict with the previous inequality

3M > R. In fact, combining these inequalities yields (R/L)2 > 7/6, so the star must be larger

than the AdS radius. Interestingly, note that T00 always vanishes as r → R, so that the energy

density on the edge of the star is zero. So, in a sense, it is more like a compact spherical cloud

than a compact spherical star. It is also interesting to note that the weak energy condition fails

if f(r) = 1 + r2/L2 +Ar4 −Br2 (for any allowed R and M). This is why we chose an r6 term

in our metric.

One can explicitly compute the semi-classical production rate in this example. If we define

x and y by

R ≡ 3 yM and M ≡ 2

7

R3

L2
x , (5.6)

then the instanton action is given by

∆S =

√
7

3

1√
xy1/3

1

(1− yc + y2
c )

{√
2− yc

√
yc

[
3

2
arctan

(√
2− yc

3yc

)
− π

4

]
+

3y2
c

2
√

4 + 2yc + y2
c

arctanh

(√
3
√

4 + 2yc + y2
c

4 + yc

)}
(5.7a)

where

yc =
2
√

7
√

1− x
3
√
xy1/3

sinh

{
1

3
arcsinh

[
27x3/2y

7
√

7(1− x)3/2

]}
. (5.7b)

In particular, the expression is finite as expected.

6 Vacuum Examples

We now construct a class of example spacetimes sourced only by a cosmological constant for

which static, stable orbits can be found, and we compute the associated instanton production

rate. Global AdS does not satisfy our condition (3.9) since the E = 0 condition would require

the particles to be created infinitely far apart. But one can view this as being close to satisfying

the condition, and hope that a small perturbation will allow the particles to be created at a

finite separation. We will show that this is indeed the case.

We construct static, axisymmetric solutions for which the boundary metric is not exactly

the Einstein static universe. We seek bulk geometries for which the boundary metric takes the

following simple form

ds2
∂ = −dt2 + L2 [1 + εS`(θ)] dΩ2

2 (6.1)
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where S`(θ) is a scalar harmonic which, under our symmetry assumptions, is related to the

Legendre polynomials P` via S`(θ) = P`(cos θ). To proceed, we will use a mixture of analytical

and numerical techniques, each of which is explained in a separate subsection.

6.1 Nonlinear perturbative approach

In this subsection we will take the so called quasi-spherical gauge, where our bulk spacetime

metric takes the following form

ds2 = −F (r, θ)

(
1 +

r2

L2

)
dt2 +

dr2

G(r, θ)

(
1 +

r2

L2

) + S(r, θ)r2dΩ2
2 , (6.2)

where F , G and S are to be determined in what follows. For F = G = S = 1 we recover pure

AdS written in standard global coordinates. We seek solutions for which

lim
r→∞

F = lim
r→∞

G = 1 , and lim
r→∞

S = 1 + εS`(θ) . (6.3)

We will demand regularity at the poles of the deformed S2, located at θ = 0, π and at the

centre we impose that the geometry is smooth. This in turn implies

1

G(θ, 0)
= S(θ, 0) , and

∂G

∂r

∣∣∣∣
r=0

=
∂F

∂r

∣∣∣∣
r=0

=
∂S

∂r

∣∣∣∣
r=0

= 0 . (6.4)

Since we are interested in this section in a perturbative expansion in ε, we shall expand

all our functions in terms of tensor derived spherical harmonics (see for instance [21]). Given

that we are working in four spacetime dimensions, there are no tensor harmonics, so we only

have the scalar derived and vector derived tensor perturbations. The geometries we seek are

axisymmetric with respect to ∂/∂φ and it is a simple exercise to show that no vector harmonics

on the two-sphere exists within such symmetries. We are thus left with scalar derived tensor

perturbations. For a generic gauge, and imposing staticity, these are given by

δg`tt = ftt(r)S` , δg`rr = frr(r)S` , δg`ij = HL(r)S`Gij +HT (r)S`ij , and δg`rθ = fr(r)∇∇θS` ,
(6.5)

where i, j are indices on the two-sphere, ∇∇ is the standard Levi-Civita connection on S2, G is

the round metric on the two-sphere and Sij is a traceless transverse tensor with respect to G,

given by

S`ij = ∇∇i∇∇jS` +
`(`+ 1)

2
S`Gij . (6.6)

Any linear diffeomorphism, say ξ, can equally be decomposed in terms of such scalar harmonics

ξ` = ξr(r)S`dr +K(r)(∇∇θS`)dθ . (6.7)
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Our gauge freedom amounts to choosing ξr and K(r) so that HT (r) = fr(r) = 0. It is a

simple exercise to show that this gauge choice is possible to achieve, by looking at the relevant

components of the gauge transformed metric perturbation

δ̂g
`

ab = δg`ab +∇(aξ
`
b) . (6.8)

This means, in our gauge, the metric functions can be expanded as

F (r, θ) = 1 +
+∞∑
i=1

∞∑
`=0

εif
(i)
` (r)S`(θ) , (6.9a)

G(r, θ) = 1 +
+∞∑
i=1

∞∑
`=0

εig
(i)
` (r)S`(θ) , (6.9b)

S(r, θ) = 1 +
+∞∑
i=1

∞∑
`=0

εis
(i)
` (r)S`(θ) . (6.9c)

We shall present generic results for arbitrary values for even ` to first order in ε, and will

specialise to the higher order case for ` = 2. To linear order in ε, we find

f
(1)
` = g

(1)
` = s

(1)
` = 0 , for ` = 0 and ` ≥ 3 , (6.10a)

and

g
(1)
2 (r) = f

(1)
2 (r) , (6.10b)

f
(1)
2 (r) = −

(`+ 2)Γ
(
`+3

2

)2

√
π(`+ 1)Γ

(
`+ 3

2

) 1

1 +
r2

L2

( r
L

)`
2F1

(
`− 1

2
,
`

2
; `+

3

2
;− r

2

L2

)
, (6.10c)

s
(1)
2 (r) = − 2r3f ′2(r)

L2 (`2 + `− 2)
−
(

1 +
`2 + `− 4

`2 + `− 2

r2

L2
+

2

`2 + `− 2

r4

L4

)
f

(1)
2 (r)

1 +
r2

L2

, (6.10d)

where 2F1(a, b; c; z) is the Gauss hypergeometric function. The normalisation was chosen so

that

lim
r→+∞

s
(1)
2 (r) = 1 . (6.11)

We are now ready to use Eq. (3.9) to linear order in ε. Along θ = 0, π and for even `, we

have

f(r) =
[
1 + εf

(1)
` (r)

](
1 +

r2

L2

)
+O(ε2) , (6.12a)

g(r) =
[
1 + εf

(1)
` (r)

](
1 +

r2

L2

)
+O(ε2) . (6.12b)
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which gives

P (r) = r +O(ε2) . (6.13)

Once the dust settles, one finds for the critical location of the orbit:

r1 =
2`

`+ 1

Γ
(
`
2

)2

Γ
(
`+1

2

)2

L

ε
+O(ε0) (6.14)

We will want to compare this result to our full nonlinear numerical results of the next

section. In order to perform such comparison, we need a gauge invariant measure for the

distance between the two orbits. This is best done by looking at the proper distance between

the two orbits, given by

P` = 2

∫ r1

0

1√
G(r, 0)

√
1 + r2

L2

dr = 2L log

(
2 r1

L

)
+O(ε) (6.15)

The calculation of the on-shell action is very simple to this order in ε, giving

∆S` = π mL+O(ε log ε) (6.16)

with the next order term being possible to determine only if F , G and S are known to second

order in ε.

For particular values of ` we can do substantially better. For instance, we took ` = 2,

and solved the resulting equations up to second order O(ε2) and thus determined the order

O(ε log ε) term missing in Eq. (6.16). The intermediate expressions are too cumbersome to be

reproduced here, but follow mutatis mutandis calculations done elsewhere [22, 23, 24].

For the proper distance we now find

P`=2 = 2L log

(
32

3π ε

)
+

(384C + 3424− 45π2)Lε

512
+O

(
ε2
)
, (6.17)

where C is Catalan’s constant. For the instanton production rate we find

∆S`=2 = πLm

{
1 +

3

16
ε

[
1 +

π

2
+ 2 log

(
3πε

32

)]}
+O

(
ε2 log ε

)
. (6.18)

Computing ∆S`=2 to this order in ε requires using the following Feynman trick twice:

arctan(a x̂) =

∫ 1

0

ax̂

1 + a2ŷ2x̂2
dŷ where a, x̂ ∈ R . (6.19)
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6.2 Exact numerical construction

We now move beyond perturbation theory and numerically construct exact vacuum solutions

with deformed boundary metrics. We will use the DeTurck formalism, which was first proposed

in [25] and reviewed in [26, 27]. Just as the preceding sections, we work in four bulk spacetime

dimensions, but our methods work equally well in higher dimensions4.

The starting point of the DeTurck formalism is to determine the most general ansatz for the

metric compatible with the desired symmetries. We are interested in static and axisymmetric

solutions. This means a hypersurface orthogonal Killing field k ≡ ∂/∂t exists and is everywhere

timelike as well as a stationary Killing field m ≡ ∂/∂φ, whose orbits are isomorphic to U(1).

Using t and φ as coordinates leads to the following general line element

ds2 = Gtt(r, θ)dt
2 +Grr(r, θ)dr

2 + 2Grθ(r, θ)dr dθ +Gθθ(r, θ)dθ
2 +Gφφ(r, θ)dφ2 , (6.20)

which still exhibits full reparameterization invariance in the (r, θ) coordinates. The remaining

gauge freedom is fixed via an appropriate choice of the so called reference metric, which is

an essential ingredient of the DeTurck formalism. One next imposes the Einstein-DeTurck

equation:

Rab +
3

L2
gab −∇(aξb) = 0 , (6.21)

where ξa = gcd [Γacd(g)− Γacd(ḡ)], Γacd(g) is the Levi-Civita connection associated with a metric

g, and ḡ is the so called reference metric. The reference metric is chosen to have the same axis

location as the metric we seek to find, and satisfies the same Dirichlet boundary conditions as

g. Solutions of Eq. (6.21) do not necessarily coincide with solutions of the Einstein equation,

except if ξa = 0. However, it turns out that this is always the case for stationary solutions

enjoying the so called (t, φ) symmetry [28], and thus, in particular, for the static solutions we

wish to determine (for the static case an alternative proof for the equivalence of solutions of

the Einstein and Einstein-DeTurck equations was presented in [29]).

The next step is an appropriate choice of reference metric. We motivate it by starting

in global AdS in standard (t, r, θ, φ) coordinates and by preforming the following change of

variables

r = L
y
√

2− y2

1− y2
, cos θ = x

√
2− x2 , and t = LT , (6.22)

which transforms

ds2 = −
(

1 +
r2

L2

)
dt2 +

dr2

1 +
r2

L2

+ r2
(
dθ2 + sin2 θdφ2

)
(6.23)

into

ds2 =
L2

(1− y2)

{
−dT 2 +

4 dy2

2− y2
+ y2(2− y2)

[
4 dx2

2− x2
+ (1− x2)2dφ2

]}
. (6.24)

4In odd spacetime dimensions we would have poor convergence properties because of conformal anomalies.

15



For the reference metric we then take

ds̄2 =
L2

(1− y2)

{
−dT 2 +

4 dy2

2− y2
+ y2(2− y2)H(x, y)

[
4 dx2

2− x2
+ (1− x2)2dφ2

]}
, (6.25a)

where

H(x, y) = (1− y2)2 + y2(2− y2)h(x) , with h(x) = 1 + εS`
(
x
√

2− x2
)
. (6.25b)

Note that H(x, 0) = 1 and H(x, 1) = h(x). Our metric ansatz now reads

ds2 =
L2

(1− y2)

{
− q1(x, y) dT 2 +

4 q2(x, y)

2− y2
(dy + y q3(x, y) dx)2 +

y2(2− y2)H(x, y)

[
4 q4(x, y) dx2

2− x2
+ (1− x2)2 q5(x, y) dφ2

]}
, (6.26)

where qi(x, y), i ∈ {1, . . . , 5} are functions of x and y to be determined next. We will be

interested in considering even values of ` only, for which S`(θ) is even under the reflection

θ → π − θ. This translates into parity symmetry under the transformation x → −x, which

we can use to half our computation domain. So we take (x, y) ∈ [0, 1]2, with x = 0 being a

symmetry hyperplane, y = 0 the regular centre, y = 1 the location of the conformal boundary

and x = 1 the north pole of the deformed S2.

Next we address the issue of boundary conditions. At y = 0, our geometry should locally

look like flat space, because this corresponds to a point. This in turn enforces

q4(x, 0) = q5(x, 0) = q2(x, 0) and
∂qi(x, y)

∂y

∣∣∣∣
y=0

= 0 . (6.27)

At x = 0 reflection symmetry imposes

∂q1(x, y)

∂x

∣∣∣∣
x=0

=
∂q2(x, y)

∂x

∣∣∣∣
x=0

=
∂q4(x, y)

∂x

∣∣∣∣
x=0

=
∂q5(x, y)

∂x

∣∣∣∣
x=0

= 0 and q3(0, y) = 0 .

(6.28)

At x = 1, the north pole of the deformed two sphere, smoothness imposes

∂q1(x, y)

∂x

∣∣∣∣
x=1

=
∂q2(x, y)

∂x

∣∣∣∣
x=1

=
∂q4(x, y)

∂x

∣∣∣∣
x=1

=
∂q5(x, y)

∂x

∣∣∣∣
x=1

= 0

q3(1, y) = 0 , and q4(1, y) = q5(1, y) . (6.29)

Finally, at the conformal boundary, we take q1(x, 1) = q2(x, 1) = q4(x, 1) = q5(x, 1) = 1

and q3(x, 1) = 0, which means that the line element (6.26) is chosen to approach the reference
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metric (6.25a). All we need to show is that the reference metric (6.25a) has the correct boundary

metric. This is easily seen if we use the coordinate transformation (6.22).

To solve the Einstein-DeTruck equation numerically, we discretise the equations using a

Chebyshev grid on Gauss-Lobatto nodes and solve the resulting equations using a standard

Newton-Raphson routine. Such methods have been reviewed extensively in [27].

6.3 Results and comparisons

Having constructed the new vacuum solutions, we now ask whether there are stable, static

solutions for particles attached to cosmic strings with the same energy as the unbroken string.

We first note that the deformation parameter, ε, is necessarily bounded above, since the bound-

ary metric would otherwise have a curvature singularity (this is best illustrated by computing

the Ricci scalar of the boundary metric) at the location of the zero of 1 + εS`(θ). In Fig. 3

we plot εmax(`) as a function of ` up to ` = 20. It is easy to show that, asymptotically,

εmax ≈ − 1
J0(j1,1)

+O(1/`), where Jk(x) is a J Bessel function of order k, and jk,l is the lth zero

of the J Bessel function of order k.

� � �� �� ��

���

���

���

���

���

���

Figure 3: εmax as a function of `: the blue disks are the exact numerical data and the red dashed
curve the leading approximation at large `.

We begin by studying the case with ` = 2, for which εmax = 2, and briefly mention at the

end what happens for different even values of ` > 2. First, we would like to understand whether

stable orbits exist for arbitrarily small values of ε, as predicted by our perturbative non-linear

results. This indeed turns out to be the case. In Fig. 4 we compute the proper distance between

the two orbits as a function of ε for ` = 2. The blue disks correspond to our exact numerical
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results and the solid red line to the analytic expression (6.17): the agreement between the two

when ε � 1 is reassuring. As we increase the deformation on the boundary, the separation

��� ��� ��� ��� ���
�

�

��

��

Figure 4: Proper distance between the two stable orbits computed for ` = 2: the blue disks
correspond to our exact numerical data and the solid red line to the perturbative expression
(6.17).

between the static particles decreases, but always stays larger than the AdS radius.

Next we compute the instanton action by computing (4.4) using our numerical solutions.

The result of this calculation is seen in Fig. 5, where our numerical data is represented by

the blue disks and the solid red line corresponds to our perturbative result (6.18). Again, the

agreement between these two expressions at small values of ε is indicative of the correctness

of both methods. As expected, the action decreases as the separation between the particles

decreases. Note that the nonlinear perturbative solution and the exact numerical solution are

obtained in different gauges.

We have extended our calculations to other even values of `, and find that increasing `

increases P` for large ε and decreases P` for small enough ε. We can observe this effect on the

left panel of Fig. 6 where we plot the proper distance between orbits for several values of `,

each of which are labelled in the figure caption. The behaviour at small ε is corroborated by

the nonlinear perturbative prediction (6.15). Nevertheless, for each value of `, we observe that

increasing ε does decrease P`.
The behaviour of the instanton action for various ` is shown on the right panel of Fig. 6.

The action increases with `, and unlike the ` = 2 case, for sufficiently large ` the action grows

with ε.
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Figure 5: Instanton action computed for the ` = 2 profile: the blue disks correspond to our
exact numerical data and the solid red line to the perturbative expression (6.18).

7 Discussion

We have presented examples of spacetimes in which a (test) cosmic string can break and produce

two particles with arbitrarily small acceleration. There is a long history of showing that small

black holes follow geodesics (see [30] for a fairly recent discussion and references to earlier work).

Similar arguments should show that particles attached to cosmic strings can be replaced by

small black holes with no change in their dynamics. (The Euclidean solutions may have conical

singularities on the horizon but they still describe pair creation [19].)

Previous examples of black hole pair creation show that the black holes are created with

their horizons identified at the moment of creation [10] and therefore that the instanton creates

a wormhole. In the limiting case of zero acceleration and for instantons free of conical singulari-

ties, the path integral computing the wormhole’s quantum state is precisely of the form studied

in [6], so with appropriate boundary conditions the back-reaction of quantum fields will render

the wormhole traversable in the semiclassical approximation. (We again remind the reader

that some large parameter is generally required to render quantum fluctuations small [5].) As

argued in the introduction, the same will be true with sufficiently small non-zero acceleration;

see in particular (1.1) for the condition relevant to the traversable wormholes of [5].

The net result is the creation of a traversable wormhole by a nonperturbative process in

quantum gravity. We have seen that while this is not possible using only light cosmic strings

in pure AdS, it is possible in nearby vacuum solutions. It is interesting to note that these

solutions all have negative total energy [31]. This leads to the following intuitive picture: the

attractive force of pure AdS is not quite sufficient to create the desired trajectories, but when
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Figure 6: Proper distance between orbits (left panel) and instanton production rate (right
panel) computed for ` = 2, 4, 6, 8, 10 plotted as a function of ε, with each curve labelling a
different value of `.

we deform the boundary metric we lower the energy, effectively producing a deeper potential

well in which it is possible.

When we replace the test particle with a small black hole, we only change the Euclidean

solution in a small tubular neighborhood of the particle trajectory which has topology S1×R3.

The S1 represents the Euclidean time along the particle worldline. To have smooth instantons,

this period must match the inverse temperature of the black hole. Since the particles in our

instantons travel a long Euclidean proper distance before their orbits close, we can find such

smooth black hole instantons by pasting in nearly-extremal Reissner-Nordström or Kerr black

holes. If the right sort of fields propagate in the wormhole throat, this should result in a

wormhole that is traversable for long periods of time. The perturbative argument is given in [6],

and it is also expected from continuity with the non-perturbative constructions of [4, 5] which

are related to thermofield double states at extremely small temperatures. If the acceleration is

small enough, we may expect the instanton to produce wormholes that remain open forever.

However, one should recall that instantons with conical singularities can sometimes yield

higher pair-creation rates than smooth ones (see e.g. [19]). This seems likely to occur in our

context, as black holes farther from extremality will have greater entropy, so reducing the charge

and angular momentum at fixed mass should increase the rate of pair production5. If one seeks

5In general, smooth instantons will extremize the action subject to varying the black hole area while holding
fixed other parameters and boundary conditions; see e.g. the recent discussion in [32]. But in [19] this extremum
has a negative mode and is not a minimum. In addition, in our case we remove the singularity by adjusting not
only the black hole area, but also both the charge q and associated potentials at infinity while holding fixed the

20



a traversable wormhole that remains open for long times, it may thus not suffice to simply wait

for the first wormhole to appear on our static trajectory. One must also wait some additional

time for one that is nearly extremal. On the other hand, the fact that energy conservation fixes

the mass m of any particle created by our instanton near the static orbit leads to a positive

feature of our process: one may choose parameters (including the string tension µ) to make

this m large, perhaps even larger than our current approximations justify, and then have the

comfort of knowing that only large wormholes will be created at that location6.

It is not yet clear how large is the class of spacetimes which allow the creation of a traversable

wormholes. In the vacuum examples discussed in the previous section, the particles are always

created with a separation larger than the AdS radius L. We have also tried many other

deformations of the boundary metric to see if we could lower the distance between the two

particles below L, but were unable to do so. This suggests that the AdS attraction is playing a

key role and similar phenomena may not be possible in vacuum asymptotically flat spacetimes.

In addition to the examples discussed here, we have also found further examples by deform-

ing the AdS soliton [33]. However, in that case there was a minimum deformation required to

find stable static orbits. Also in that case, we were never able to decrease the distance between

the two orbits to be below the AdS length scale L.

We also tried a number of asymptotically AdS spacetimes for which it does not seem to be

possible to nucleate a traversable wormhole. We have constructed (perturbatively) a number

of boson stars in AdS for a wide range of mass parameter, with alternative and standard

quantization, and we were not able to find stable orbits. We also constructed smooth geometries

in global AdS with scalars satisfying double trace boundary conditions, and for those, also no

orbits were found.
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location of the trajectory. Extremizing the action under such variations need not remove conical singularities.
6Replacing our cosmic string with a magnetic flux tube should lead to an interesting variation. At first order

in the magnetic charge q, the mass of particles created by decay of the magnetic field at a given separation is
proportional to q. So watching a fixed static orbit selects a given charge-to-mass ratio q/m rather than the fixed
mass m obtained in our case. One should thus be able to engineer an instanton that creates only nearly-extreme
black hole pairs regardless of whether conical singularities are allowed at the horizon. But then the dominant
wormholes created on the static orbit are likely to be small and large ones will be more rare.
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